Neural Networks
Back to Home
01. Neural Network Intuition
02. Introduction to Deep Learning
03. Starting Machine Learning
04. A Note on Deep Learning
05. Quiz: Housing Prices
06. Solution: Housing Prices
07. Linear to Logistic Regression
08. Classification Problems 1
09. Classification Problems 2
10. Linear Boundaries
11. Higher Dimensions
12. Perceptrons
13. Perceptrons II
14. Why "Neural Networks"?
15. Perceptrons as Logical Operators
16. Perceptron Trick
17. Perceptron Algorithm
18. Error Functions
19. Log-loss Error Function
20. Discrete vs Continuous
21. Softmax
22. One-Hot Encoding
23. Maximum Likelihood
24. Maximizing Probabilities
25. Cross-Entropy 1
26. Cross-Entropy 2
27. Multi-Class Cross Entropy
28. Logistic Regression
29. Gradient Descent
30. Gradient Descent: The Code
31. Perceptron vs Gradient Descent
32. Continuous Perceptrons
33. Non-linear Data
34. Non-Linear Models
35. Neural Network Architecture
36. Feedforward
37. Multilayer Perceptrons
38. Backpropagation
39. Further Reading
Back to Home
01. Neural Network Intuition
03 Deep Learning A01 Neural Network Intuition
Next Concept